• DocumentCode
    43805
  • Title

    Constrained Optimal Input Signal Design for Data-Centric Estimation Methods

  • Author

    Deshpande, S. ; Rivera, Daniel E.

  • Author_Institution
    Control Syst. Eng. Lab. (CSEL), Arizona State Univ., Tempe, AZ, USA
  • Volume
    59
  • Issue
    11
  • fYear
    2014
  • fDate
    Nov. 2014
  • Firstpage
    2990
  • Lastpage
    2995
  • Abstract
    This technical note examines the design of constrained input signals for data-centric estimation methods which systematically generate a local function approximation from a database of regressors at a current operating point. The proposed method addresses the optimal distribution of regressor vectors under constraints for a linear time-invariant (LTI) system. The resulting nonconvex optimization problems are solved using semidefinite relaxation methods. Numerical examples illustrate the benefits and usefulness of the proposed input signal design formulations.
  • Keywords
    concave programming; function approximation; regression analysis; signal processing; LTI system; constrained optimal input signal design; data-centric estimation methods; linear time-invariant system; local function approximation; nonconvex optimization problems; operating point; optimal regressor vector distribution; regressor database; semidefinite relaxation methods; Approximation methods; Estimation; Noise; Optimization; Programming; Signal design; Vectors; Data-centric estimation; input signal design; semidefinite relaxation;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2014.2351656
  • Filename
    6882811