Title :
Efficient multiclass object detection by a hierarchy of classifiers
Author_Institution :
Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
Abstract :
We consider detecting object instances from multiple classes on grayscale images. Traditional approaches learn a classifier for each class separately and apply each of them in an exhaustive search over positions and scales. We achieve an efficient detection by organizing the search coarse-to-fine based on a hierarchical partitioning of the entire hypothesis space, the set of all possible object instances, so that groups of hypotheses can be pruned simultaneously without evaluating each one individually. In this paper, we develop an algorithm to jointly learn the hierarchy along with a classifier at each node by exploring the common parts shared among a group of object instances at all levels in the hierarchy. We also show how the confusions of the initial coarse-to-fine search can be resolved by comparing pairs of conflicting detections using cheap binary classifiers. The whole process is illustrated by detecting and recognizing handwritten digits.
Keywords :
image recognition; object detection; pattern classification; binary classifiers; coarse-to-fine search; grayscale images; handwritten digit recognition; multiclass object detection; Computer vision; Detectors; Gray-scale; Handwriting recognition; Image edge detection; Object detection; Organizing; Partitioning algorithms; Robustness; Testing;
Conference_Titel :
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
Print_ISBN :
0-7695-2372-2
DOI :
10.1109/CVPR.2005.140