DocumentCode :
439050
Title :
Camera motion and visual information fusion for 3D target tracking
Author :
Jia, Zhen ; Balasuriya, Arjuna ; Challa, Subhash
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
Volume :
3
fYear :
2004
fDate :
6-9 Dec. 2004
Firstpage :
2297
Abstract :
This paper proposes a data fusion scheme for visual object identification and tracking by autonomous vehicles. In this scheme, image motion vectors fields, color features, visual disparity depth information and camera motion parameters are fused together to identify the target 3D visual and dynamic features. This paper also presents a detailed description of the 3D target tracking algorithm using an extended Kalman filter with a constant velocity dynamic model. Performance of the proposed scheme is discussed through experimental results.
Keywords :
Kalman filters; cameras; remotely operated vehicles; robot vision; sensor fusion; target tracking; 3D target tracking; autonomous vehicles; camera motion; color features; constant velocity dynamic model; data fusion scheme; extended Kalman filter; image motion vectors fields; object tracking; visual disparity depth information; visual information fusion; visual object identification; Cameras; Clustering algorithms; Data mining; Image motion analysis; Image segmentation; Layout; Optical filters; Particle beam optics; Robustness; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th
Print_ISBN :
0-7803-8653-1
Type :
conf
DOI :
10.1109/ICARCV.2004.1469790
Filename :
1469790
Link To Document :
بازگشت