• DocumentCode
    43915
  • Title

    Multifractal Random Walks With Fractional Brownian Motion via Malliavin Calculus

  • Author

    Fauth, Alexis ; Tudor, Ciprian A.

  • Author_Institution
    SAMM, Univ. de Pantheon-Sorbonne Paris 1, Paris, France
  • Volume
    60
  • Issue
    3
  • fYear
    2014
  • fDate
    Mar-14
  • Firstpage
    1963
  • Lastpage
    1975
  • Abstract
    We introduce a Multifractal Random Walk (MRW) defined as a stochastic integral of an infinitely divisible noise with respect to a dependent fractional Brownian motion. Using the techniques of the Malliavin calculus, we study the existence of this object and its properties. We then propose a continuous time model for financial modeling that captures the main properties observed in the empirical data, including the leverage effect. We illustrate our result by numerical simulations.
  • Keywords
    Brownian motion; numerical analysis; pricing; share prices; stochastic processes; time series; Malliavin calculus; continuous time model; cotton price; dependent fractional Brownian motion; financial modeling; financial stock price time series; infinitely divisible noise; leverage effect; multifractal random walks; numerical simulations; Biological system modeling; Brownian motion; Calculus; Fractals; Mathematical model; Noise; Stochastic processes; Fractional Brownian motion; Malliavin calculus; high frequency financial data; infinitely divisible cascades; leverage effect; multifractal random walk; scaling;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2296785
  • Filename
    6698302