DocumentCode :
44014
Title :
Generalized Composite Kernel Framework for Hyperspectral Image Classification
Author :
Jun Li ; Reddy Marpu, Prashanth ; Plaza, Antonio ; Bioucas-Dias, Jose M. ; Atli Benediktsson, Jon
Author_Institution :
Dept. of Technol. of Comput. & Commun., Univ. of Extremadura, Caceres, Spain
Volume :
51
Issue :
9
fYear :
2013
fDate :
Sept. 2013
Firstpage :
4816
Lastpage :
4829
Abstract :
This paper presents a new framework for the development of generalized composite kernel machines for hyperspectral image classification. We construct a new family of generalized composite kernels which exhibit great flexibility when combining the spectral and the spatial information contained in the hyperspectral data, without any weight parameters. The classifier adopted in this work is the multinomial logistic regression, and the spatial information is modeled from extended multiattribute profiles. In order to illustrate the good performance of the proposed framework, support vector machines are also used for evaluation purposes. Our experimental results with real hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory´s Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed framework leads to state-of-the-art classification performance in complex analysis scenarios.
Keywords :
geophysical image processing; geophysical techniques; hyperspectral imaging; image classification; infrared imaging; infrared spectrometers; regression analysis; visible spectrometers; National Aeronautics-and-Space Administration; airborne infrared imaging spectrometer; airborne visible imaging spectrometer; extended multiattribute profiles; generalized composite kernel machines; hyperspectral image classification; jet propulsion laboratory; multinomial logistic regression; reflective optics spectrographic imaging system; spatial information; spectral information; state-of-the-art classification performance; Educational institutions; Hyperspectral imaging; Kernel; Logistics; Support vector machines; Training; Extended multiattribute morphological profiles (MPs); generalized composite kernel; hyperspectral imaging; multinomial logistic regression (MLR); supervised classification;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2012.2230268
Filename :
6450085
Link To Document :
بازگشت