DocumentCode :
441709
Title :
Research on parameter identification of friction model for servo systems based on genetic algorithms
Author :
Liu, De-peng
Author_Institution :
Sch. of Sci., Hangzhou Dianzi Univ., Zhejiang, China
Volume :
2
fYear :
2005
fDate :
18-21 Aug. 2005
Firstpage :
1116
Abstract :
Based on genetic algorithms, this paper presents a two-step offline method for the parameter identification of LuGre friction model. In the first step, four static parameters are estimated through the Stribeck curve, and in the second step, two dynamic parameters are obtained by the limit cycle output of the system. Genetic algorithms are used in both steps to minimize the identification errors. At last, the simulation results have shown the effectiveness of the proposed method for friction parameter identification.
Keywords :
friction; genetic algorithms; parameter estimation; servomechanisms; LuGre friction model; Stribeck curve; friction parameter identification; genetic algorithm; servo system; Control system synthesis; Electronic mail; Friction; Genetic algorithms; Limit-cycles; Nonlinear dynamical systems; PD control; Parameter estimation; Servomechanisms; Torque control; Friction; Genetic algorithms; Servo system; arameter identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on
Conference_Location :
Guangzhou, China
Print_ISBN :
0-7803-9091-1
Type :
conf
DOI :
10.1109/ICMLC.2005.1527110
Filename :
1527110
Link To Document :
بازگشت