DocumentCode
441709
Title
Research on parameter identification of friction model for servo systems based on genetic algorithms
Author
Liu, De-peng
Author_Institution
Sch. of Sci., Hangzhou Dianzi Univ., Zhejiang, China
Volume
2
fYear
2005
fDate
18-21 Aug. 2005
Firstpage
1116
Abstract
Based on genetic algorithms, this paper presents a two-step offline method for the parameter identification of LuGre friction model. In the first step, four static parameters are estimated through the Stribeck curve, and in the second step, two dynamic parameters are obtained by the limit cycle output of the system. Genetic algorithms are used in both steps to minimize the identification errors. At last, the simulation results have shown the effectiveness of the proposed method for friction parameter identification.
Keywords
friction; genetic algorithms; parameter estimation; servomechanisms; LuGre friction model; Stribeck curve; friction parameter identification; genetic algorithm; servo system; Control system synthesis; Electronic mail; Friction; Genetic algorithms; Limit-cycles; Nonlinear dynamical systems; PD control; Parameter estimation; Servomechanisms; Torque control; Friction; Genetic algorithms; Servo system; arameter identification;
fLanguage
English
Publisher
ieee
Conference_Titel
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on
Conference_Location
Guangzhou, China
Print_ISBN
0-7803-9091-1
Type
conf
DOI
10.1109/ICMLC.2005.1527110
Filename
1527110
Link To Document