• DocumentCode
    441709
  • Title

    Research on parameter identification of friction model for servo systems based on genetic algorithms

  • Author

    Liu, De-peng

  • Author_Institution
    Sch. of Sci., Hangzhou Dianzi Univ., Zhejiang, China
  • Volume
    2
  • fYear
    2005
  • fDate
    18-21 Aug. 2005
  • Firstpage
    1116
  • Abstract
    Based on genetic algorithms, this paper presents a two-step offline method for the parameter identification of LuGre friction model. In the first step, four static parameters are estimated through the Stribeck curve, and in the second step, two dynamic parameters are obtained by the limit cycle output of the system. Genetic algorithms are used in both steps to minimize the identification errors. At last, the simulation results have shown the effectiveness of the proposed method for friction parameter identification.
  • Keywords
    friction; genetic algorithms; parameter estimation; servomechanisms; LuGre friction model; Stribeck curve; friction parameter identification; genetic algorithm; servo system; Control system synthesis; Electronic mail; Friction; Genetic algorithms; Limit-cycles; Nonlinear dynamical systems; PD control; Parameter estimation; Servomechanisms; Torque control; Friction; Genetic algorithms; Servo system; arameter identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on
  • Conference_Location
    Guangzhou, China
  • Print_ISBN
    0-7803-9091-1
  • Type

    conf

  • DOI
    10.1109/ICMLC.2005.1527110
  • Filename
    1527110