DocumentCode :
441885
Title :
On separation axioms in L-fuzzy topological spaces
Author :
Cheng, Ji-Shu
Author_Institution :
Coll. of Sci., Hangzhou Dianzi Univ., China
Volume :
4
fYear :
2005
fDate :
18-21 Aug. 2005
Firstpage :
2534
Abstract :
A new concept of Hausdorff separation in an L-fuzzy topological space is defined and investigated. With respect to it, several nice properties are obtained. For instance, Hausdorff space implies T 1; Hausdorff space is proved to be hereditary, topological invariant and L-good extend. Furthermore, it is proved that an L-fuzzy topological space is Hausdorff space if and only if every molecular net has at most one limit.
Keywords :
fuzzy set theory; topology; Hausdorff separation; L-fuzzy topological space separation axioms; molecular net; order-homomorphism; Cybernetics; Educational institutions; Lattices; Machine learning; Topology; Hausdorff space; L-Fuzzy topology; molecular net; order-homomorphism;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on
Conference_Location :
Guangzhou, China
Print_ISBN :
0-7803-9091-1
Type :
conf
DOI :
10.1109/ICMLC.2005.1527370
Filename :
1527370
Link To Document :
بازگشت