• DocumentCode
    442866
  • Title

    Clustering of the Poincare vectors

  • Author

    Lakroum, S. ; Devlaminck, V. ; Terrier, P. ; Biela-Enberg, P. ; Postaire, J.-G.

  • Author_Institution
    Lab. d´´Automatique, de Genie Inf. et Signal, Univ. des Sci. et Technol. de Lille, France
  • Volume
    2
  • fYear
    2005
  • fDate
    11-14 Sept. 2005
  • Abstract
    Data clustering is useful for discovering significant patterns and characteristics in large datasets. In this paper, we address the problem of clustering the Poincare vectors. Three variants of the k-means algorithm and a competitive neural technique are tested and compared. The empirical performance of the different methods in terms of classification and segmentation accuracy is evaluated. The results obtained on real life passive polarimetric images demonstrate the usefulness of such approach for exploiting the polarimetric information.
  • Keywords
    image classification; image segmentation; matrix algebra; pattern clustering; polarimetry; unsupervised learning; vectors; Poincare vectors; classification accuracy; competitive neural technique; data clustering; k-means algorithm; passive polarimetric images; segmentation accuracy; unsupervised classification; Clustering algorithms; Electromagnetic wave polarization; Image segmentation; Layout; Optical imaging; Optical polarization; Optical surface waves; Polarimetry; Stokes parameters; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 2005. ICIP 2005. IEEE International Conference on
  • Print_ISBN
    0-7803-9134-9
  • Type

    conf

  • DOI
    10.1109/ICIP.2005.1530274
  • Filename
    1530274