• DocumentCode
    445469
  • Title

    A note on the population based incremental learning with infinite population size

  • Author

    Rastegar, R. ; Meybodi, M.R.

  • Author_Institution
    Comput. Eng. & IT Dept., Amirkabir Univ. of Technol., Tehran
  • Volume
    1
  • fYear
    2005
  • fDate
    5-5 Sept. 2005
  • Firstpage
    198
  • Abstract
    In this paper, we study the dynamical properties of the population based incremental learning (PBIL) algorithm when it uses truncation, proportional, and Boltzmann selection schemas. The results show that if the population size tends to infinity, with any learning rate, the local optima of the function to be optimized are asymptotically stable fixed points of the PBIL
  • Keywords
    distributed algorithms; genetic algorithms; learning (artificial intelligence); search problems; Boltzmann selection schemas; distribution algorithms; genetic algorithms; infinite population size; population based incremental learning algorithm; Algorithm design and analysis; Biological cells; Buildings; Clustering algorithms; Electronic design automation and methodology; Genetic algorithms; Genetic mutations; H infinity control; Learning automata; Mutual information;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation, 2005. The 2005 IEEE Congress on
  • Conference_Location
    Edinburgh, Scotland
  • Print_ISBN
    0-7803-9363-5
  • Type

    conf

  • DOI
    10.1109/CEC.2005.1554685
  • Filename
    1554685