DocumentCode :
445815
Title :
Maximally discriminative spectral feature projections using mutual information
Author :
Ozertem, Umut
Author_Institution :
Dept. of CSEE, Oregon Health & Sci. Univ., Portland, OR, USA
Volume :
1
fYear :
2005
fDate :
31 July-4 Aug. 2005
Firstpage :
208
Abstract :
Determining the optimal subspace projections, which maintains the best representation of the original data, is an important problem in machine learning and pattern recognition. In this paper, we propose a nonparametric nonlinear subspace projection technique that employs kernel density estimation based information theoretic methods and kernel machines, in order to maintain class separability maximally under the Shannon mutual information criterion.
Keywords :
information theory; learning (artificial intelligence); statistical analysis; Shannon mutual information criterion; kernel density estimation based information theory; kernel machines; machine learning; maximally discriminative spectral feature projection; nonparametric nonlinear subspace projection; optimal subspace projections; pattern recognition; Area measurement; Entropy; Filters; Gaussian processes; Kernel; Linear discriminant analysis; Machine learning; Mutual information; Pattern recognition; Principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
Print_ISBN :
0-7803-9048-2
Type :
conf
DOI :
10.1109/IJCNN.2005.1555831
Filename :
1555831
Link To Document :
بازگشت