• DocumentCode
    445815
  • Title

    Maximally discriminative spectral feature projections using mutual information

  • Author

    Ozertem, Umut

  • Author_Institution
    Dept. of CSEE, Oregon Health & Sci. Univ., Portland, OR, USA
  • Volume
    1
  • fYear
    2005
  • fDate
    31 July-4 Aug. 2005
  • Firstpage
    208
  • Abstract
    Determining the optimal subspace projections, which maintains the best representation of the original data, is an important problem in machine learning and pattern recognition. In this paper, we propose a nonparametric nonlinear subspace projection technique that employs kernel density estimation based information theoretic methods and kernel machines, in order to maintain class separability maximally under the Shannon mutual information criterion.
  • Keywords
    information theory; learning (artificial intelligence); statistical analysis; Shannon mutual information criterion; kernel density estimation based information theory; kernel machines; machine learning; maximally discriminative spectral feature projection; nonparametric nonlinear subspace projection; optimal subspace projections; pattern recognition; Area measurement; Entropy; Filters; Gaussian processes; Kernel; Linear discriminant analysis; Machine learning; Mutual information; Pattern recognition; Principal component analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
  • Print_ISBN
    0-7803-9048-2
  • Type

    conf

  • DOI
    10.1109/IJCNN.2005.1555831
  • Filename
    1555831