DocumentCode :
445830
Title :
A simpler Bayesian network model for genetic regulatory network inference
Author :
Bastos, Gustavo ; Guimarães, Katia S.
Author_Institution :
Center of Informatics, Fed. Univ. of Pernambuco, Recife, Brazil
Volume :
1
fYear :
2005
fDate :
31 July-4 Aug. 2005
Firstpage :
304
Abstract :
We use Bayesian networks and a nonparametric regression model for inferring genetic regulatory networks. We have used a combination of the Bayesian information criterion (BIC) and a ´voting´ method to pick out the edges of the output graph. Using BIC makes the model simpler than previous ones, still obtaining, however, good results, as shown in our experiments with synthetic data and Saccharomyces cerevisiae cell cycle microarray gene expression data.
Keywords :
belief networks; biology computing; genetics; inference mechanisms; nonparametric statistics; regression analysis; Bayesian information criterion; Bayesian network model; Saccharomyces cerevisiae cell cycle microarray gene expression data; genetic regulatory network inference; nonparametric regression model; voting method; Bayesian methods; Boolean functions; Cells (biology); Differential equations; Electronic mail; Gene expression; Genetics; Informatics; Regulators; Voting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
Print_ISBN :
0-7803-9048-2
Type :
conf
DOI :
10.1109/IJCNN.2005.1555847
Filename :
1555847
Link To Document :
بازگشت