• DocumentCode
    445830
  • Title

    A simpler Bayesian network model for genetic regulatory network inference

  • Author

    Bastos, Gustavo ; Guimarães, Katia S.

  • Author_Institution
    Center of Informatics, Fed. Univ. of Pernambuco, Recife, Brazil
  • Volume
    1
  • fYear
    2005
  • fDate
    31 July-4 Aug. 2005
  • Firstpage
    304
  • Abstract
    We use Bayesian networks and a nonparametric regression model for inferring genetic regulatory networks. We have used a combination of the Bayesian information criterion (BIC) and a ´voting´ method to pick out the edges of the output graph. Using BIC makes the model simpler than previous ones, still obtaining, however, good results, as shown in our experiments with synthetic data and Saccharomyces cerevisiae cell cycle microarray gene expression data.
  • Keywords
    belief networks; biology computing; genetics; inference mechanisms; nonparametric statistics; regression analysis; Bayesian information criterion; Bayesian network model; Saccharomyces cerevisiae cell cycle microarray gene expression data; genetic regulatory network inference; nonparametric regression model; voting method; Bayesian methods; Boolean functions; Cells (biology); Differential equations; Electronic mail; Gene expression; Genetics; Informatics; Regulators; Voting;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
  • Print_ISBN
    0-7803-9048-2
  • Type

    conf

  • DOI
    10.1109/IJCNN.2005.1555847
  • Filename
    1555847