• DocumentCode
    446114
  • Title

    Using domain knowledge to constrain structure learning in a Bayesian bioagent detector

  • Author

    Saksena, Anshu ; Lucarelli, Dennis ; Wang, I-Jeng

  • Author_Institution
    Appl. Phys. Lab, Johns Hopkins Univ., Laurel, MD, USA
  • Volume
    4
  • fYear
    2005
  • fDate
    July 31 2005-Aug. 4 2005
  • Firstpage
    2601
  • Abstract
    A novel procedure for learning a probabilistic model from mass spectrometry data that accounts for domain specific noise and mitigates the complexity of Bayesian structure learning is presented. We evaluate the algorithm by applying the learned probabilistic model to microorganism detection from mass spectrometry data.
  • Keywords
    belief networks; biocomputing; learning (artificial intelligence); microorganisms; Bayesian bioagent detector; Bayesian structure learning; domain knowledge; mass spectrometry data; Acceleration; Bayesian methods; Biological system modeling; Biomarkers; Detectors; Laboratories; Machine learning algorithms; Mass spectroscopy; Microorganisms; Proteins;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
  • Conference_Location
    Montreal, Que.
  • Print_ISBN
    0-7803-9048-2
  • Type

    conf

  • DOI
    10.1109/IJCNN.2005.1556313
  • Filename
    1556313