• DocumentCode
    446834
  • Title

    Correlation and Aliasing in Dynamic Branch Predictors

  • Author

    Mudge, Trevor ; Lee, Chih-Chieh ; Sechrest, Stuart

  • fYear
    1996
  • fDate
    22-24 May 1996
  • Firstpage
    22
  • Lastpage
    22
  • Abstract
    Previous branch prediction studies have relied primarily upon the SPECint89 and SPECint92 benchmarks for evaluation. Most of these benchmarks exercise a very small amount of code. As a consequence, the resources required by these schemes for accurate predictions of larger programs have not been clear. Moreover, many of these studies have simulated a very limited number of configurations. Here we report on simulations of a variety of branch prediction schemes using a set of relatively large benchmark programs that we believe to be more representative of likely system workloads. We have examined the sensitivity of these prediction schemes to variation in workload, in resources, and in design and configuration. We show that for predictors with small available resources, aliasing between distinct branches can have the dominant influence on prediction accuracy. For global history based schemes, such as GAs and gshare, aliasing in the predictor table can eliminate any advantage gained through inter branch correlation. For self-history based prediction scheme, such as PAs, it is aliasing in the buffer recording branch history, rather than the predictor table, that poses problems. Past studies have sometimes confused these effects and allocated resources incorrectly.
  • Keywords
    2-level adaptive prediction; branch prediction; correlation; system traces; Counting circuits; Hardware; History; Permission; Pipelines; 2-level adaptive prediction; branch prediction; correlation; system traces;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Architecture, 1996 23rd Annual International Symposium on
  • ISSN
    1063-6897
  • Print_ISBN
    0-89791-786-3
  • Type

    conf

  • DOI
    10.1109/ISCA.1996.10003
  • Filename
    1563032