DocumentCode :
454942
Title :
Empirical Conditional Mean: Nonparametric Estimator for Comparametric Exposure Compensation
Author :
Kim, Dong Sik ; Lee, Su Yeon ; Lee, Kiryung
Author_Institution :
Sch. of Electron. & Inf. Eng., Hankuk Univ. of Foreign Studies
Volume :
2
fYear :
2006
fDate :
14-19 May 2006
Abstract :
In this paper, a comparametric exposure compensation is conducted using a nonparametric estimator: empirical conditional mean. The Nadaraya-Watson estimator is used to smooth the empirical conditional mean curve especially for the case of small number of samples. The performance of the estimator is compared with those of the polynomial and piecewise-linear fittings. Designing the Nadaraya-Watson estimator is very simple and achieves lower errors than the fitting cases, which require a heavy computational burden of solving equations, without worry about the singular matrix case
Keywords :
image processing; piecewise linear techniques; polynomials; regression analysis; Nadaraya-Watson estimator; comparametric exposure compensation; empirical conditional mean; nonparametric estimator; piecewise-linear fittings; polynomial fittings; regression analysis; Apertures; Computational complexity; Digital cameras; Electrochemical machining; Equations; Histograms; Image quality; Kernel; Lighting; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on
Conference_Location :
Toulouse
ISSN :
1520-6149
Print_ISBN :
1-4244-0469-X
Type :
conf
DOI :
10.1109/ICASSP.2006.1660503
Filename :
1660503
Link To Document :
بازگشت