DocumentCode :
455415
Title :
Cramer-Rao Bound Analysis on Multiple Scattering in Multistatic Point Scatterer Estimation
Author :
Shi, Gang ; Nehorai, Arye
Author_Institution :
Dept. of Electr. & Syst. Eng., Washington Univ., St. Louis, MO
Volume :
4
fYear :
2006
fDate :
14-19 May 2006
Abstract :
The resolution improvements of time reversal methods through exploiting nonhomogeneous media have attracted much interest recently with broad applications, including the destruction of kidney stones, underwater acoustics, radar, detection of defects in metals, communications, and mine detection. In this paper, we analyze the effect of inhomogeneity generated by multiple scattering among point scatterers under a multistatic sensing setup. We derive the Cramer-Rao bounds (CRBs) on parameters of the scatterers and compare the CRBs for multiple scattering using the Foldy-Lax model with the reference case without multiple scattering using the Born approximation. We find that multiple scattering could significantly improve the estimation performance of the system. For the case where multiple scattering is not possible, e.g., where only a single target scatterer exists in the illuminated scenario, we propose the use of artificial scatterers, which could effectively improve the estimation performance of the target despite a decrease in the degrees of freedom of the estimation problem due to the introduced unknown parameters of the artificial scatterers. Numerical examples demonstrate the advantage of the artificial scatterer
Keywords :
electromagnetic wave scattering; inhomogeneous media; matrix algebra; Cramer-Rao bound analysis; Foldy-Lax model; artificial scatterers; multiple scattering; multistatic point scatterer estimation; multistatic sensing setup; nonhomogeneous media; Acoustic scattering; Acoustic signal detection; Nonhomogeneous media; Radar applications; Radar detection; Radar scattering; Scattering parameters; Underwater acoustics; Underwater communication; Underwater tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on
Conference_Location :
Toulouse
ISSN :
1520-6149
Print_ISBN :
1-4244-0469-X
Type :
conf
DOI :
10.1109/ICASSP.2006.1661169
Filename :
1661169
Link To Document :
بازگشت