DocumentCode :
457057
Title :
Adaptative Markov Random Fields for Omnidirectional Vision
Author :
Demonceaux, Cédric ; Vasseur, Pascal
Author_Institution :
Centre de Robotique, d´´Electrotechnique et d´´Automatique, Univ. de Picardie Jules Verne, Amiens
Volume :
1
fYear :
0
fDate :
0-0 0
Firstpage :
848
Lastpage :
851
Abstract :
Images obtained with catadioptric sensors contain significant deformations which prevent the direct use of classical image treatments. Thus, Markov random fields (MRF) whose usefulness is now obvious for projective image processing, cannot be used directly on catadioptric images because of the inadequacy of the neighborhood. In this paper, we propose to define a new neighborhood for MRF by using the equivalence theorem developed for central catadioptric sensors. We show the importance of this adaptation for a motion detection application
Keywords :
Markov processes; computer vision; Markov random fields; catadioptric images; central catadioptric sensors; equivalence theorem; motion detection; omnidirectional vision; projective image processing; Cameras; Image processing; Image segmentation; Image sensors; Markov random fields; Mirrors; Motion detection; Optical network units; Robot sensing systems; Sensor systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.215
Filename :
1699023
Link To Document :
بازگشت