DocumentCode :
457201
Title :
Parameter Tuning using the Out-of-Bootstrap Generalisation Error Estimate for Stochastic Discrimination and Random Forests
Author :
Prior, M. ; Windeatt, T.
Author_Institution :
CVSSP, Surrey Univ., Guildford
Volume :
2
fYear :
0
fDate :
0-0 0
Firstpage :
498
Lastpage :
501
Abstract :
Stochastic discrimination is a machine learning algorithm with strong theoretical underpinnings and good published results on UCI datasets. However, it has not been popular amongst practitioners. We look at some of the issues involved in its use, propose the out-of-bootstrap error estimator as a means of tuning stochastic discrimination´s and other classifiers´ performance and contrast stochastic discrimination´s utility with that of a related classification technique of random forests
Keywords :
generalisation (artificial intelligence); learning (artificial intelligence); random processes; stochastic processes; classification technique; machine learning algorithm; out-of-bootstrap generalisation error estimate; parameter tuning; random forests; stochastic discrimination; Availability; Boosting; Error analysis; Machine learning; Machine learning algorithms; Management training; Random variables; Set theory; Stochastic processes; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.913
Filename :
1699252
Link To Document :
بازگشت