DocumentCode :
457209
Title :
An Approach for Constructing Sparse Kernel Classifier
Author :
Yuan, Zejian ; Qu, Yanyun ; Yang, Yang ; Zheng, Nanning
Author_Institution :
Inst. of Artificial Intelligence & Robotics, Xi´´an Jiaotong Univ.
Volume :
2
fYear :
0
fDate :
0-0 0
Firstpage :
560
Lastpage :
563
Abstract :
This paper presents a new approach for constructing sparse kernel classifier with large margin. Firstly, we propose a kernel function pursuit strategy for selecting a small number of kernel functions which are used for expanding final classifier. And then an added constraint controls the sparseness of the final classifier and an approach is provided to solve the optimization problem with L2 loss function and complexity measure. The experiment results show that sparse kernel classifier can achieved higher efficiency for both training and testing without sacrificing prediction accuracy
Keywords :
optimisation; pattern classification; L2 loss function; complexity measure; constraint controls; kernel function pursuit strategy; optimization problem; sparse kernel classifier construction; Constraint optimization; Kernel; Loss measurement; Matching pursuit algorithms; Pattern recognition; Runtime; Space technology; Support vector machine classification; Support vector machines; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.235
Filename :
1699267
Link To Document :
بازگشت