DocumentCode :
457389
Title :
A Markovian Approach for Handwritten Document Segmentation
Author :
Nicolas, Stephane ; Paquet, Thierry ; Heutte, Laurent
Author_Institution :
Lab. LITIS, Univ. de Rouen, Saint Etienne du Rouvray
Volume :
3
fYear :
0
fDate :
0-0 0
Firstpage :
292
Lastpage :
295
Abstract :
We address in this paper the problem of segmenting complex handwritten pages such as novelist drafts or authorial manuscripts. We propose to use stochastic and contextual models in order to cope with local spatial variability, and to take into account some prior knowledge about the global structure of the document image. The models we propose to use are Markov random field models
Keywords :
Markov processes; document image processing; handwriting recognition; image segmentation; random processes; Markov random field models; Markovian approach; authorial manuscripts; document images; handwritten document segmentation; novelist drafts; Context modeling; Handwriting recognition; Image analysis; Image recognition; Image segmentation; Indexing; Markov random fields; Paper technology; Stochastic processes; Text analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.94
Filename :
1699523
Link To Document :
بازگشت