DocumentCode :
45782
Title :
Improving Detection of Driver Genes: Power-Law Null Model of Copy Number Variation in Cancer
Author :
Loohuis, Loes Olde ; Witzel, Andreas ; Mishra, Bud
Author_Institution :
Center for Neurobehavioral Genetics, Univ. of California Los Angeles, Los Angeles, CA, USA
Volume :
11
Issue :
6
fYear :
2014
fDate :
Nov.-Dec. 1 2014
Firstpage :
1260
Lastpage :
1263
Abstract :
In this paper, we study Copy Number Variation (CNV) data. The underlying process generating CNV segments is generally assumed to be memory-less, giving rise to an exponential distribution of segment lengths. In this paper, we provide evidence from cancer patient data, which suggests that this generative model is too simplistic, and that segment lengths follow a power-law distribution instead. We conjecture a simple preferential attachment generative model that provides the basis for the observed power-law distribution. We then show how an existing statistical method for detecting cancer driver genes can be improved by incorporating the power-law distribution in the null model.
Keywords :
bioinformatics; cancer; exponential distribution; genetics; cancer patient data; copy number variation; driver gene detection; exponential distribution; power-law distribution; power-law null model; process generating CNV segments; segment lengths; simple preferential attachment generative model; statistical method; Bioinformatics; Cancer; Computational biology; Computational modeling; Data models; Genomics; Copy number variation; cancer driver genes detection; generativemechanism; power-law distribution;
fLanguage :
English
Journal_Title :
Computational Biology and Bioinformatics, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1545-5963
Type :
jour
DOI :
10.1109/TCBB.2014.2351805
Filename :
6883143
Link To Document :
بازگشت