DocumentCode
460945
Title
Designing real-time H.264 decoders with dataflow architectures
Author
Sair, Suleyman ; Kim, Youngsoo
Author_Institution
NC State University
fYear
2005
fDate
Sept. 2005
Firstpage
291
Lastpage
296
Abstract
High performance microprocessors are designed with general-purpose applications in mind. When it comes to embedded applications, these architectures typically perform control-intensive tasks in a System-on-Chip (SoC) design. But they are significantly inefficient for data-intensive tasks such as video encoding/decoding. Although configurable processors fill this gap by complementing the existing functional units with instruction extensions, their performance lags behind the needs of real-time embedded tasks. In this paper, we evaluate the performance potential of a dataflow processor for H.264 video decoding. We first profile the H.264 application to capture the amount of data traffic among modules. We use this information to guide the placement of H.264 modules in the WaveScalar dataflow architecture. A simulated annealing based placement algorithm produces the final placement aiming to optimize the communication costs between the modules in the dataflow architecture. In addition to outperforming contemporary embedded and customized processors, our simulated annealing guided design shows a speedup of 13% in execution time over the original WaveScalar architecture. With our dataflow design methodology, emerging embedded applications requiring several GOPS to meet real-time constraints can be drafted within a reasonable amount of design time.
Keywords
Acceleration; Application software; Computer architecture; Control systems; Decoding; Design methodology; Encoding; Microprocessors; Permission; Simulated annealing; H.264; WaveScalar; dataflow architecture;
fLanguage
English
Publisher
ieee
Conference_Titel
Hardware/Software Codesign and System Synthesis, 2005. CODES+ISSS '05. Third IEEE/ACM/IFIP International Conference on
Conference_Location
Jersey City, NJ, USA
Print_ISBN
1-59593-161-9
Type
conf
DOI
10.1145/1084834.1084906
Filename
4076352
Link To Document