DocumentCode :
46122
Title :
Colour compressed sensing imaging via sparse difference and fractal minimisation recovery
Author :
Ji-xin Liu ; Xiao-fei Li ; Guang Han ; Ning Sun ; Kun Du ; Quan-sen Sun
Author_Institution :
Eng. Res. Center of Wideband Wireless Commun. Technol., Nanjing Univ. of Posts & Telecommun., Nanjing, China
Volume :
9
Issue :
5
fYear :
2015
fDate :
5 2015
Firstpage :
369
Lastpage :
380
Abstract :
In colour compressed sensing (CS) imaging, the current two bottlenecks for application are (1) high computation cost of sparse representation (SR) with over-complete dictionary and (2) unsatisfactory imaging quality of CS recovery with l1-norm minimisation. Thus, this study proposes a novel colour CS imaging framework. In the framework, two improvements are achieved: (1) the authors present the sparse difference to reduce the computation cost of SR in RGB colour imaging; (2) the authors use fractal dimension instead of l1-norm as the object function to actualise high quality CS recovery. The feasibility of our colour CS imaging framework is proved by sseveral experiments.
Keywords :
compressed sensing; fractals; image colour analysis; image representation; minimisation; sparse matrices; CS recovery; RGB colour imaging; SR computation cost; colour compressed sensing imaging; computation cost; fractal dimension; fractal minimisation recovery; l1-norm minimisation; overcomplete dictionary; sparse difference; sparse representation; unsatisfactory imaging quality;
fLanguage :
English
Journal_Title :
Image Processing, IET
Publisher :
iet
ISSN :
1751-9659
Type :
jour
DOI :
10.1049/iet-ipr.2014.0346
Filename :
7095755
Link To Document :
بازگشت