DocumentCode :
463717
Title :
The Multilinear ICA Decompositionwith Applications to NSS Modeling
Author :
Raj, Raghu G. ; Bovik, Alan C.
Author_Institution :
Center for Perceptual Syst., Austin Univ., TX, USA
Volume :
2
fYear :
2007
fDate :
15-20 April 2007
Abstract :
We refine the classical independent component analysis (ICA) decomposition using a multilinear expansion of the probability density function of the source statistics. In particular, to model the source statistics of natural image textures, we introduce a specific non-linear system that allows us to elegantly capture the statistical dependences between the responses of the multilinear ICA (MICA) filters. The resulting multilinear probability density is analytically tractable and does not require Monte Carlo simulations to estimate the model parameters. We demonstrate the success of the MICA model on natural textures and discuss applications to non-stationarity detection and natural scene statistics (NSS) modeling.
Keywords :
Monte Carlo methods; filtering theory; image texture; independent component analysis; ICA filters; Monte Carlo simulations; independent component analysis; multilinear ICA decomposition; natural image textures; natural scene statistics; nonstationarity detection; parameter estimation; probability density function; source statistics; specific nonlinear system; Cost function; Image texture; Independent component analysis; Layout; Parameter estimation; Principal component analysis; Probability density function; Statistical analysis; Statistics; Unsupervised learning; Multilinear ICA; Natural Scene Statistics (NSS); Non-linear Modeling; Textures;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on
Conference_Location :
Honolulu, HI
ISSN :
1520-6149
Print_ISBN :
1-4244-0727-3
Type :
conf
DOI :
10.1109/ICASSP.2007.366324
Filename :
4217497
Link To Document :
بازگشت