DocumentCode :
463982
Title :
Conjugate Gradient Algorithms for Minor Subspace Analysis
Author :
Badeau, Roland ; David, Barak ; Richard, Guilhem
Author_Institution :
Departement TSI, Telecom Paris, France
Volume :
3
fYear :
2007
fDate :
15-20 April 2007
Abstract :
We introduce a conjugate gradient method for estimating and tracking the minor eigenvector of a data correlation matrix. This new algorithm is less computationally demanding and converges faster than other methods derived from the conjugate gradient approach. It can also be applied in the context of minor subspace tracking, as a pre-processing step for the YAST algorithm, in order to enhance its performance. Simulations show that the resulting algorithm converges much faster than existing minor subspace trackers.
Keywords :
conjugate gradient methods; correlation methods; eigenvalues and eigenfunctions; matrix algebra; YAST algorithm; conjugate gradient algorithms; data correlation matrix; minor eigenvector; minor subspace analysis; subspace trackers; Adaptive filters; Algorithm design and analysis; Computational modeling; Convergence; Cost function; Gradient methods; Robustness; Spectral analysis; System identification; Time series analysis; Conjugate gradient methods; Minor subspace analysis; Subspace tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on
Conference_Location :
Honolulu, HI
ISSN :
1520-6149
Print_ISBN :
1-4244-0727-3
Type :
conf
DOI :
10.1109/ICASSP.2007.366854
Filename :
4217884
Link To Document :
بازگشت