• DocumentCode
    466982
  • Title

    Two Dimensional Pattern Formation of Prey-predator System

  • Author

    Shen, Hongxia ; Jin, Zhen

  • Author_Institution
    North Univ. of China, Taiyuan
  • Volume
    2
  • fYear
    2007
  • fDate
    July 30 2007-Aug. 1 2007
  • Firstpage
    343
  • Lastpage
    346
  • Abstract
    We investigate the reaction-diffusion system of the classical Bazykin model in spatial two dimensional domain. In this paper, we derive the conditions for turing instability in detail and obtain the turing space, in which the spatial system can emerge turing pattern. Furthermore, we simulate the pattern formation using the periodical boundary condition. Our results show that the Bazykin system stabilizes to a striplike pattern structure when diffusion is present.
  • Keywords
    flow instability; pattern formation; predator-prey systems; reaction-diffusion systems; classical Bazykin model; pattern formation; prey-predator system; reaction-diffusion system; turing instability; Biological system modeling; Biological systems; Chemical analysis; Mathematical model; Mathematics; Pattern formation; Software engineering; Stability analysis; Steady-state; Temperature;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS International Conference on
  • Conference_Location
    Qingdao
  • Print_ISBN
    978-0-7695-2909-7
  • Type

    conf

  • DOI
    10.1109/SNPD.2007.215
  • Filename
    4287705