DocumentCode :
471440
Title :
Efficient model-based design of neurophysiological experiments
Author :
Lewi, Jeremy ; Butera, Robert ; Paninski, Liam
Author_Institution :
Sch. of Bioeng., Georgia Inst. of Technol., Atlanta, GA
fYear :
2006
fDate :
Aug. 30 2006-Sept. 3 2006
Firstpage :
599
Lastpage :
602
Abstract :
We apply an adaptive approach to optimal experimental design in the context of estimating the unknown parameters of a model of a neuron´s response. We present an algorithm to choose the optimal (most informative) stimulus on each trial; this algorithm can be implemented efficiently even for high-dimensional stimulus and parameter spaces (in particular, no high-dimensional numerical optimizations or integrations are required). Our simulation results show that model parameters can be estimated much more efficiently using this adaptive algorithm rather than random sampling. We also show that this adaptive approach leads to superior performance in the case that the model parameters are nonstationary, as would be expected in real experiments
Keywords :
adaptive systems; neurophysiology; physiological models; adaptive approach; high-dimensional stimulus; model parameter estimation; neuron response model; neurophysiological experiments; optimal experimental design; parameter spaces; Cities and towns; Context modeling; Gaussian approximation; Neurons; Optimization methods; Parameter estimation; Sampling methods; Senior members; Statistics; USA Councils;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
Conference_Location :
New York, NY
ISSN :
1557-170X
Print_ISBN :
1-4244-0032-5
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/IEMBS.2006.260690
Filename :
4461821
Link To Document :
بازگشت