• DocumentCode
    4721
  • Title

    Automated Box-Cox Transformations for Improved Visual Encoding

  • Author

    Maciejewski, Ross ; Pattath, Avin ; Ko, Sungahn ; Hafen, Ryan ; Cleveland, William S. ; Ebert, David S.

  • Author_Institution
    Sch. of Comput., Arizona State Univ., Tempe, AZ, USA
  • Volume
    19
  • Issue
    1
  • fYear
    2013
  • fDate
    Jan. 2013
  • Firstpage
    130
  • Lastpage
    140
  • Abstract
    The concept of preconditioning data (utilizing a power transformation as an initial step) for analysis and visualization is well established within the statistical community and is employed as part of statistical modeling and analysis. Such transformations condition the data to various inherent assumptions of statistical inference procedures, as well as making the data more symmetric and easier to visualize and interpret. In this paper, we explore the use of the Box-Cox family of power transformations to semiautomatically adjust visual parameters. We focus on time-series scaling, axis transformations, and color binning for choropleth maps. We illustrate the usage of this transformation through various examples, and discuss the value and some issues in semiautomatically using these transformations for more effective data visualization.
  • Keywords
    data visualisation; inference mechanisms; statistical analysis; time series; automated box-cox transformations; axis transformations; choropleth maps; color binning; data preconditioning; data visualization; improved visual encoding; statistical analysis; statistical community; statistical inference procedures; statistical modeling; time-series scaling; Data visualization; Gaussian distribution; Histograms; Hospitals; Image color analysis; Transforms; Visualization; Box-Cox; Data transformation; Data visualization; Gaussian distribution; Histograms; Hospitals; Image color analysis; Transforms; Visualization; automated box-cox transformations; axis transformations; choropleth maps; color binning; color mapping; data preconditioning; data visualisation; data visualization; improved visual encoding; inference mechanisms; normal distribution; statistical analysis; statistical community; statistical inference procedures; statistical modeling; time series; time-series scaling;
  • fLanguage
    English
  • Journal_Title
    Visualization and Computer Graphics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1077-2626
  • Type

    jour

  • DOI
    10.1109/TVCG.2012.64
  • Filename
    6155715