• DocumentCode
    473364
  • Title

    Identification of source to sink relationship in deregulated power systems using artificial neural network

  • Author

    Mustafa, M.W. ; Khairuddin, A.B. ; Shareef, H. ; Khalid, S.N.

  • Author_Institution
    Univ. Teknol. Malaysia, Johor
  • fYear
    2007
  • fDate
    3-6 Dec. 2007
  • Firstpage
    6
  • Lastpage
    11
  • Abstract
    This paper suggests a method to identify the relationship of real power transfer between source and sink using artificial neural network (ANN). The basic idea is to use supervised learning paradigm to train the ANN. For that a conventional power flow tracing method is used as a teacher. Based on solved load flow and followed by power tracing procedure, the description of inputs and outputs of the training data for the ANN is easily obtained. An artificial neural network is developed to assess which generators are supplying a specific load. Most commonly used feedforward architecture has been chosen for the proposed ANN power transfer allocation technique. Almost all system variables obtained from load flow solutions are utilised as an input to the neural network. Moreover, log-sigmoid activation functions are incorporated in the hidden layer to realise the non linear nature of the power flow allocation. The proposed ANN provides promising results in terms of accuracy and computation time. The IEEE 14-bus network is utilised as a test system to illustrate the effectiveness of the ANN output compared to that of conventional methods.
  • Keywords
    learning (artificial intelligence); load flow; neural nets; power engineering computing; ANN power transfer allocation technique; IEEE 14-bus network; artificial neural network; deregulated power systems; log-sigmoid activation functions; power flow tracing method; power tracing procedure; supervised learning paradigm; Artificial neural networks; Power engineering; Power systems; Testing; Artificial Neural Network; graph theory; load flow; power flow tracing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Power Engineering Conference, 2007. IPEC 2007. International
  • Conference_Location
    Singapore
  • Print_ISBN
    978-981-05-9423-7
  • Type

    conf

  • Filename
    4509992