DocumentCode :
478241
Title :
Lower Bound for Quantum Integration Error on Some Sobolev Classes
Author :
Ye, Peixin
Author_Institution :
Sch. of Math. Sci., Nankai Univ., Tianjin
Volume :
3
fYear :
2008
fDate :
18-20 Oct. 2008
Firstpage :
642
Lastpage :
646
Abstract :
We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev classes B(Wp r ([0, 1]d)), (r isin R+ d). Then combining our previous results we determine the optimal bound of nth minimal query error for anisotropic Holder-Nikolskii class B(Hinfin r([0, 1]d)), (r isin R+ d) and Sobolev class B(Wp r([0, 1]d)) (r isin Nd). The results show the quantum algorithms give speed up over classical algorithms.
Keywords :
quantum computing; Sobolev classes; anisotropic Holder-Nikolskii class; lower bound; minimal query error; quantum integration error; reduction approach; Anisotropic magnetoresistance; Approximation algorithms; Computational modeling; Computer errors; Databases; Neodymium; Quantum computing; Upper bound; Anisotropic Sobolev classes; Optimal error bound; Quantum integration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation, 2008. ICNC '08. Fourth International Conference on
Conference_Location :
Jinan
Print_ISBN :
978-0-7695-3304-9
Type :
conf
DOI :
10.1109/ICNC.2008.223
Filename :
4667216
Link To Document :
بازگشت