Title :
Perceptual Annotation: Measuring Human Vision to Improve Computer Vision
Author :
Scheirer, Walter J. ; Anthony, Samuel E. ; Nakayama, Keisuke ; Cox, David D.
Author_Institution :
Dept. of Mol. & Cellular Biol., Harvard Univ., Cambridge, MA, USA
Abstract :
For many problems in computer vision, human learners are considerably better than machines. Humans possess highly accurate internal recognition and learning mechanisms that are not yet understood, and they frequently have access to more extensive training data through a lifetime of unbiased experience with the visual world. We propose to use visual psychophysics to directly leverage the abilities of human subjects to build better machine learning systems. First, we use an advanced online psychometric testing platform to make new kinds of annotation data available for learning. Second, we develop a technique for harnessing these new kinds of information-“perceptual annotations”-for support vector machines. A key intuition for this approach is that while it may remain infeasible to dramatically increase the amount of data and high-quality labels available for the training of a given system, measuring the exemplar-by-exemplar difficulty and pattern of errors of human annotators can provide important information for regularizing the solution of the system at hand. A case study for the problem face detection demonstrates that this approach yields state-of-the-art results on the challenging FDDB data set.
Keywords :
computer vision; learning (artificial intelligence); object detection; psychology; support vector machines; FDDB data set; annotation data; computer vision; exemplar-by-exemplar difficulty; face detection; human vision measurement; internal recognition mechanism; learning mechanism; machine learning systems; perceptual annotation; psychometric testing platform; support vector machines; visual psychophysics; Accuracy; Face; Face detection; Support vector machines; Training; Training data; Visualization; Machine learning; citizen science; face detection; psychology; psychometrics; psychophysics; regularization; support vector machines; visual recognition;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2013.2297711