DocumentCode :
478612
Title :
Attribute Value Taxonomy Generation through Matrix Based Adaptive Genetic Algorithm
Author :
Jo, Hyunsung ; Na, Yong-Chan ; Oh, Byonghwa ; Yang, Jihoon ; Honavar, Vasant
Author_Institution :
Data Min. Res. Lab., Sogang Univ., Seoul
Volume :
1
fYear :
2008
fDate :
3-5 Nov. 2008
Firstpage :
393
Lastpage :
400
Abstract :
We introduce a new adaptive genetic method for AVT generation, MCM-AVT-Learner. The MCM-AVT-Learner imports the mutation and crossover matrices which makes effective use of the fitness ranking and loci statistics information. The suggested method is not only parameter-free, but also capable of producing high quality AVTs. We describe experiments on several complete and missing benchmark data sets that compare the performance of AVT-DTL using the reslut AVTs of the MCM-AVT-Learner and existing AVT learning algorithms. Results show that the AVTs generated by MCM-AVT-Learner are competitive with human-generated AVTs or AVTs generated by HAC-AVT-Learner and GA-AVT-Learner in terms of classification accuracy and the compactness of the classifier.
Keywords :
genetic algorithms; learning (artificial intelligence); matrix algebra; pattern classification; MCM-AVT-Learner; adaptive genetic algorithm; attribute value taxonomy generation; fitness ranking information; loci statistics information; Artificial intelligence; Computer science; Data mining; Decision trees; Genetic algorithms; Genetic mutations; Laboratories; Statistics; Taxonomy; USA Councils; adaptive genetic algorithm; attribute value taxonomy; mutation and crossover matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Tools with Artificial Intelligence, 2008. ICTAI '08. 20th IEEE International Conference on
Conference_Location :
Dayton, OH
ISSN :
1082-3409
Print_ISBN :
978-0-7695-3440-4
Type :
conf
DOI :
10.1109/ICTAI.2008.142
Filename :
4669716
Link To Document :
بازگشت