Title :
Quantum Approximation on Some Classes of Multivarite Functions
Author_Institution :
Sch. of Math. Sci., Nankai Univ., Tianjin
Abstract :
We study the quantum query error of approximation of functions from anisotropic Sobolev class B(Wp r([0, 1]d)) and Holder-Nikolskii class B(Hp r([0, 1]d)) in the Lq([0, 1]d) norm for all 1 les p, q les infin. The results show that for the class B(Wp r([0, 1]d)) (r isin Nd) when p < q the quantum algorithms can essentially improve the rate of convergence of classical deterministic and randomized algorithms, while for the class B(Hp r([0, 1]d)) and B(Wp r([0, 1]d)) (r isin R+ d) when p ges q the optimal convergence rate is the same for all three settings.
Keywords :
approximation theory; computational complexity; quantum computing; Holder-Nikolskii class; Lesbegue norm; Sobolev class; multivariate functions; quantum approximation; quantum query; Anisotropic magnetoresistance; Computational modeling; Computer errors; Computer science; Convergence; Power measurement; Quantum computing; Software engineering;
Conference_Titel :
Computer Science and Software Engineering, 2008 International Conference on
Conference_Location :
Wuhan, Hubei
Print_ISBN :
978-0-7695-3336-0
DOI :
10.1109/CSSE.2008.650