DocumentCode :
480710
Title :
Grouping Categorical Anomalies
Author :
Gebski, Matthew ; Penev, Alex ; Wong, Raymond K.
Author_Institution :
NICTA, Univ. of New South Wales, Sydney, NSW
Volume :
1
fYear :
2008
fDate :
9-12 Dec. 2008
Firstpage :
411
Lastpage :
414
Abstract :
We present an approach for discovery of groups of unusual data points that are anomalous for similar reasons. This differs from clustering in that the points that are grouped may be quite ´distant´ and can use categorical attributes, and differs from anomaly detection in that we are not looking for individual outliers.
Keywords :
security of data; anomaly detection; categorical anomalies grouping; categorical attributes; Eyes; Hair; Inspection; Intelligent agent; Joining processes; Probability; anomaly; categorical data; data mining; outlier;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT '08. IEEE/WIC/ACM International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
978-0-7695-3496-1
Type :
conf
DOI :
10.1109/WIIAT.2008.162
Filename :
4740484
Link To Document :
بازگشت