DocumentCode :
483219
Title :
Promoting Data Mining Methodologies by Architecture-Level Optimizations
Author :
Ge, Xin ; Ding, Enjie ; Xie, Hongxia
Author_Institution :
Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou
fYear :
2009
fDate :
23-25 Jan. 2009
Firstpage :
179
Lastpage :
182
Abstract :
This paper presents a new theoretical data mining framework that adapts the existing data mining systems with the architecture of the Knowledge Grid, the mechanism of the ontologies, and the factor of the human-driven knowledge. Aiming at much of the research to date focusing on the technique and algorithms, the new framework describes the essential factors from systemic and technical viewpoints respectively in order to balance the effect between the two aspects.
Keywords :
data mining; ontologies (artificial intelligence); optimisation; architecture-level optimization; data mining framework; human-driven knowledge; knowledge grid; ontology; Computer architecture; Computer science; Data analysis; Data engineering; Data mining; Data structures; Knowledge engineering; Ontologies; Optimization methods; Paper technology; Data Mining; Human-driven Knowledge; Information Technology; Knowledge Grid;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Knowledge Discovery and Data Mining, 2009. WKDD 2009. Second International Workshop on
Conference_Location :
Moscow
Print_ISBN :
978-0-7695-3543-2
Type :
conf
DOI :
10.1109/WKDD.2009.52
Filename :
4771907
Link To Document :
بازگشت