• DocumentCode
    484063
  • Title

    On The Spectral Correlation Structure of Hyperspectral Imaging Data

  • Author

    Manolakis, D. ; Lockwood, R. ; Cooley, T.

  • Author_Institution
    MIT Lincoln Lab., Lexington, MA
  • Volume
    2
  • fYear
    2008
  • fDate
    7-11 July 2008
  • Abstract
    Spectral correlation, as quantified by the elements of the covariance matrix, plays a prominent role in the development of optimum statistical algorithms for hyperspectral data exploitation. Indeed, the most useful statistical models for hyperspectral image modeling, namely the multivariate normal distribution and the multivariate t-distribution, are parameterized by the spectral covariance matrix. The inverse of the covariance matrix, however, also has important interpretations. In this paper, we discuss the properties connected with the inverse covariance matrix and we describe their use in hyperspectral data analysis.
  • Keywords
    covariance matrices; data analysis; image processing; hyperspectral data analysis; hyperspectral image modeling; inverse covariance matrix; multivariate normal distribution; multivariate t-distribution; spectral correlation structure; spectral covariance matrix; statistical algorithms; Covariance matrix; Data analysis; Force sensors; Gaussian distribution; Hyperspectral imaging; Hyperspectral sensors; Laboratories; Reflectivity; Sparse matrices; Wiener filter;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
  • Conference_Location
    Boston, MA
  • Print_ISBN
    978-1-4244-2807-6
  • Electronic_ISBN
    978-1-4244-2808-3
  • Type

    conf

  • DOI
    10.1109/IGARSS.2008.4779059
  • Filename
    4779059