DocumentCode :
484508
Title :
Very-High Resolution Image Classification using Morphological Operators and SVM
Author :
Tuia, D. ; Pacifici, F. ; Pozdnoukhov, A. ; Kaiser, C. ; Solimini, D. ; Emery, W.J.
Author_Institution :
Inst. of Geomatics & Anal. of Risk, Univ. of Lausanne, Lausanne
Volume :
4
fYear :
2008
fDate :
7-11 July 2008
Abstract :
An extensive analysis based on the use of different morphological filters for the classification of very-high resolution panchromatic images is presented. Feature selection on high-dimensional input space is performed using recursive feature elimination, a support vector machines specific method performing backward elimination based on margin-estimation criterion. Experimental results on an eight-classes image of Las Vegas (USA) confirmed the effectiveness of the analysis pointing out the relevancy of the most contributing morphological features which resulted in high classification accuracy using panchromatic imagery.
Keywords :
image classification; mathematical morphology; support vector machines; terrain mapping; Las Vegas; USA; image classification; margin-estimation criterion; morphological filters; recursive feature elimination; remote sensing; support vector machines specific method; very-high resolution panchromatic images; Filters; Image analysis; Image classification; Image color analysis; Image resolution; Morphology; Remote sensing; Spatial resolution; Support vector machine classification; Support vector machines; Feature selection; RFE-SVM; mathematical morphology; urban remote sensing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-2807-6
Electronic_ISBN :
978-1-4244-2808-3
Type :
conf
DOI :
10.1109/IGARSS.2008.4779697
Filename :
4779697
Link To Document :
بازگشت