DocumentCode :
485809
Title :
Model Reduction of Bilinear Control Systems
Author :
Hsu, Chin S. ; Crawley, C.A. ; Desai, Uday B.
Author_Institution :
Washington State University, Department of Electrical Engineering, Pullman, Washington 99164-2210
fYear :
1983
fDate :
22-24 June 1983
Firstpage :
426
Lastpage :
432
Abstract :
In this paper, the problem of model reduction for discrete bilinear control systems is considered. Based upon the fundamental relationships among the system reachability, observability and stability, two methods for obtaining the reduced-order models are introduced. The first method applies the singular value decomposition on the generalized Hankel matrix which is defined in terms of the impulse response data. The second method utilizes the factorization of the reachability and observability Gramians. These Gramians are shown to satisfy generalized Lyapunov matrix equations under certain condtions. The order-reduction algorithms developed for bilinear systems have been tested on a fifth-order neutron kinetic model. A third-order model which is balanced with respect to both reachability and observability is shown to accurately approximate the original fifth-order model.
Keywords :
Control system synthesis; Equations; Matrix decomposition; Neutrons; Nonlinear systems; Observability; Reduced order systems; Singular value decomposition; Stability; System testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1983
Conference_Location :
San Francisco, CA, USA
Type :
conf
Filename :
4788151
Link To Document :
بازگشت