DocumentCode :
487025
Title :
A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates
Author :
Spall, James C.
Author_Institution :
The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20707
fYear :
1987
fDate :
10-12 June 1987
Firstpage :
1161
Lastpage :
1167
Abstract :
This paper shows how stochastic approximation (SA) can be used to construct maximum likelihood estimates of system parameters. The procedure described here relies on a derivative approximation other than the usual finite-difference approximation associated with a Kiefer-Wolfowitz SA procedure. This alternative derivative approximation requires fewer, by a factor equal to the dimension of the parameter vector being estimated, computations than the standard finite-difference approximation. Numerical evidence presented in the paper indicates that this SA procedure is, relative to a Kiefer-Wolfowitz procedure, most efficient when considering large-scale systems.
Keywords :
Approximation algorithms; Equations; Finite difference methods; Laboratories; Large-scale systems; Maximum likelihood estimation; Parameter estimation; Physics; Stochastic processes; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1987
Conference_Location :
Minneapolis, MN, USA
Type :
conf
Filename :
4789489
Link To Document :
بازگشت