• DocumentCode
    487724
  • Title

    The Largest Stability Hypercube for Families of Polynomials with Linear Uncertainty

  • Author

    Djaferis, T.E.

  • Author_Institution
    Electrical and Computer Engineering Department, University of Massachusetts, Amherst, MA 01003
  • fYear
    1989
  • fDate
    21-23 June 1989
  • Firstpage
    633
  • Lastpage
    638
  • Abstract
    Let ¿(s) = ¿0(s) = ¿0(s) + a1 ¿1(s) + a2¿2(s) +...+ ak¿k(s) be a polynomial with coefficients that depend linearly on real parameters ai, 1 ¿ i ¿ k. Let ¿0(s) be stable of degree n and ¿i, 1 ¿ i ¿ k, of degree less than n. Assume that the ai are allowed to take values in the k dimensional hypercube ¿¿a = {(a1,...,ak)¿Rk: a-i ¿ ai ¿ ¿ a+i}, where a-1i ≪ 0, a+i ≫ 0, 1 ¿ i ¿ k are fixed and ¿ ¿ 0. In this paper we consider the problem of how to compute the largest value ¿* such that the family is stable in ¿¿a for 0 ¿ ¿ ≪ ¿*. Considering the problem in the frequency domain, a function of frequency can be constructed whose infimum is ¿*. In this paper we show that to compute ¿* one need only consider the values of this function at a finite number of frequencies. The number of frequencies is polynomial in k, and the frequencies themselves are explicitly determined from the given data.
  • Keywords
    Control systems; Discrete time systems; Frequency domain analysis; Hypercubes; Polynomials; Robustness; Stability; State-space methods; Time invariant systems; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1989
  • Conference_Location
    Pittsburgh, PA, USA
  • Type

    conf

  • Filename
    4790265