DocumentCode
487724
Title
The Largest Stability Hypercube for Families of Polynomials with Linear Uncertainty
Author
Djaferis, T.E.
Author_Institution
Electrical and Computer Engineering Department, University of Massachusetts, Amherst, MA 01003
fYear
1989
fDate
21-23 June 1989
Firstpage
633
Lastpage
638
Abstract
Let ¿(s) = ¿0 (s) = ¿0 (s) + a1 ¿1 (s) + a2 ¿2 (s) +...+ ak ¿k (s) be a polynomial with coefficients that depend linearly on real parameters ai , 1 ¿ i ¿ k. Let ¿0 (s) be stable of degree n and ¿i , 1 ¿ i ¿ k, of degree less than n. Assume that the ai are allowed to take values in the k dimensional hypercube ¿¿a = {(a1 ,...,ak )¿Rk: a-i ¿ ai ¿ ¿ a+i }, where a-1i ≪ 0, a+i ≫ 0, 1 ¿ i ¿ k are fixed and ¿ ¿ 0. In this paper we consider the problem of how to compute the largest value ¿* such that the family is stable in ¿¿a for 0 ¿ ¿ ≪ ¿*. Considering the problem in the frequency domain, a function of frequency can be constructed whose infimum is ¿*. In this paper we show that to compute ¿* one need only consider the values of this function at a finite number of frequencies. The number of frequencies is polynomial in k, and the frequencies themselves are explicitly determined from the given data.
Keywords
Control systems; Discrete time systems; Frequency domain analysis; Hypercubes; Polynomials; Robustness; Stability; State-space methods; Time invariant systems; Uncertainty;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, 1989
Conference_Location
Pittsburgh, PA, USA
Type
conf
Filename
4790265
Link To Document