DocumentCode :
487830
Title :
Identification of State-Space Parameters in the Presence of Uncertain Nuisance Parameters
Author :
Garner, John P. ; Spall, James C.
Author_Institution :
Computational Engineering, Inc., 14504 Greenview Drive, Suite 500, Laurel, Maryland 20708
fYear :
1989
fDate :
21-23 June 1989
Firstpage :
1226
Lastpage :
1230
Abstract :
A methodology is presented to account for the uncertainty in maximum likelihood estimates of state space parameters in the presence of uncertain nuisance parameters. The technique uses the asymptotic normality of the uncertainty in the estimates and the implicit function theorem to determine a correction to the estimate uncertainty evaluated from the Fisher information matrix. Efficient evaluation of the correction using Kalman filters is discussed and a numerical example for the X-22A aircraft is presented.
Keywords :
Aircraft; Covariance matrix; Laboratories; Maximum likelihood estimation; Monte Carlo methods; Parameter estimation; Physics; State estimation; State-space methods; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1989
Conference_Location :
Pittsburgh, PA, USA
Type :
conf
Filename :
4790376
Link To Document :
بازگشت