DocumentCode :
488129
Title :
Convexity Property of the One-sided Multivariable Stability Margin
Author :
Tekawy, Jonathan A. ; Safonov, Michael G. ; Chiang, Richard Y.
Author_Institution :
Control Research, Northrop Corporation, Hawthorne, CA 90250
fYear :
1990
fDate :
23-25 May 1990
Firstpage :
161
Lastpage :
162
Abstract :
In evaluating the stability robustness of multivariable control systems having "one-sided" parameter uncertainty, a problem that naturally arises is the minimization over diagonal matrices D of the greatest eigenvalue of (eD Ae-D + (eD Ae-D)*)/2. The minimization is proved to be convex, thus guaranteeing that every local minimum, is also a global minimum and, in theory, guaranteeing the global convergence of generalised gradient nonlinear programming algorithms for computing the minimizing D.
Keywords :
Control systems; Eigenvalues and eigenfunctions; Minimization methods; Robust control; Robust stability; Robustness; Stability criteria; Taylor series; Uncertain systems; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1990
Conference_Location :
San Diego, CA, USA
Type :
conf
Filename :
4790719
Link To Document :
بازگشت