DocumentCode :
489327
Title :
An Approach to Constrained Neural Global Optimization
Author :
Adamczy, B. ; Zohdy, M.A.
Author_Institution :
Center for Robotics and Advanced Automation, Oakland University, Rochestes, MI 48309
fYear :
1992
fDate :
24-26 June 1992
Firstpage :
196
Lastpage :
201
Abstract :
This paper presents a stochastic neural approach to the problem of determining the global extremum of multivariable, non-linear objective functions subject to constraints. The approximate value of the global extremum is found by using a special transformation followed by neural least squares estimation.
Keywords :
Constraint optimization; Equations; Least squares approximation; Least squares methods; Neural networks; Q measurement; Robots; Stochastic processes; Tellurium; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1992
Conference_Location :
Chicago, IL, USA
Print_ISBN :
0-7803-0210-9
Type :
conf
Filename :
4792054
Link To Document :
بازگشت