Title :
On Using the Parameter Covariance for Improving the Recursive Least-Squares Algorithm
Author :
Ramambason, O.C. ; Crisalle, O.D. ; Bonvin, D.
Author_Institution :
Institute d´´Automatique, Ecole Polytechnique F?d?rale de Lausanne, CH - 1015 LAUSANNE, Switzerland
Abstract :
Normally, the gain matrix P(t) of the recursive least-squares algorithm has to be adjusted when parameter variations are detected. In this work, an on-line estimation of the parameter covariance Q(t) is proposed for this adjustment on the basis of the prediction error ¿(t). Simulation results of a process with time-varying parameters show that on-line auto-adaptation of this covariance brings better results compared to the use of a forgetting factor or the blind choice of an additionnal term to the gain matrix.
Keywords :
Chemical engineering; Covariance matrix; Filters; Linear regression; Parameter estimation; Proposals; Resonance light scattering; Silicon compounds; State estimation; Time varying systems;
Conference_Titel :
American Control Conference, 1992
Conference_Location :
Chicago, IL, USA
Print_ISBN :
0-7803-0210-9