• DocumentCode
    49172
  • Title

    Gaussian Robust Sequential and Predictive Coding

  • Author

    Lin Song ; Jun Chen ; Jia Wang ; Tie Liu

  • Author_Institution
    Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada
  • Volume
    59
  • Issue
    6
  • fYear
    2013
  • fDate
    Jun-13
  • Firstpage
    3635
  • Lastpage
    3652
  • Abstract
    We introduce two new source coding problems: robust sequential coding and robust predictive coding. For the Gauss-Markov source model with the mean squared error distortion measure, we characterize certain supporting hyperplanes of the rate region of these two coding problems. Our investigation also reveals an information-theoretic minimax theorem and the associated extremal inequalities.
  • Keywords
    Gaussian processes; Markov processes; least mean squares methods; minimax techniques; sequential codes; source coding; Gauss-Markov source model; Gaussian robust sequential coding; extremal inequalities; information-theoretic minimax theorem; mean squared error distortion measure; rate region; robust predictive coding; source coding; Decoding; Encoding; Image reconstruction; Materials; Predictive coding; Robustness; Vectors; Extremal inequality; Gauss–Markov source; minimax theorem; predictive coding; saddle point; sequential coding;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2245720
  • Filename
    6457506