Author :
Batude, P. ; Vinet, M. ; Pouydebasque, A. ; Le Royer, C. ; Previtali, B. ; Tabone, C. ; Clavelier, L. ; Michaud, S. ; Valentian, A. ; Thomas, O. ; Rozeau, O. ; Coudrain, P. ; Leyris, C. ; Romanjek, K. ; Garros, X. ; Sanchez, L. ; Baud, L. ; Roman, A. ; Ca
Author_Institution :
LETI, CEA, Grenoble, France
Abstract :
In this work, 3D monolithic cells have been demonstrated, featuring the first perfectly crystalline upper active layer thanks to wafer bonding. The low temperature process (<600degC) of the top GeOI and SOI MOSFETs leads to well behaved characteristics and allows preservation of bottom FETs performance. The benefit of the decreased process temperature is highlighted by improved short channel effect control down to LG = 50 nm. Both gains in density and performance have been studied with advanced design rules. Processing CMOS on each layer leads to an average 40% density improvement as compared to 2D standard layout.
Keywords :
CMOS integrated circuits; MOSFET; elemental semiconductors; germanium; monolithic integrated circuits; silicon; wafer bonding; CMOS processing; Ge; GeOI 3D monolithic cell integration; GeOI MOSFET; SOI 3D monolithic cell integration; SOI MOSFET; Si; high density applications; process temperature; short channel effect; wafer bonding; CMOS process; Crystallization; FETs; MOSFETs; Performance gain; Temperature control; Wafer bonding;