• DocumentCode
    497548
  • Title

    Particle filtering and data association using attribute data

  • Author

    Ekman, Mats

  • Author_Institution
    Saab Syst., Jarfalla, Sweden
  • fYear
    2009
  • fDate
    6-9 July 2009
  • Firstpage
    9
  • Lastpage
    16
  • Abstract
    This paper presents a joint classification and multi-target tracking method using particle filters. We consider a type of identity attribute data which are easily incorporated directly into the single-target posterior expression. The classification of the target is performed with a Bayesian update of the posterior probabilities of an identity hypothesis. Also, we propose a simple method of recursively updating possible time-varying attribute data model parameters. The effectiveness of the proposed method is illustrated in a simulation study using a dense multi target scenario.
  • Keywords
    Bayes methods; particle filtering (numerical methods); pattern classification; probability; sensor fusion; target tracking; attribute data; data association; joint classification; multitarget tracking method; particle filtering; single-target posterior expression; target classification; time-varying attribute data model parameters; Bayesian methods; Data models; Information filtering; Information filters; Noise measurement; Particle filters; Particle measurements; Particle tracking; Target tracking; Time measurement; Particle filtering; attribute data; classification; data association;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Fusion, 2009. FUSION '09. 12th International Conference on
  • Conference_Location
    Seattle, WA
  • Print_ISBN
    978-0-9824-4380-4
  • Type

    conf

  • Filename
    5203640