Title :
Anomaly detection in sea traffic - A comparison of the Gaussian Mixture Model and the Kernel Density Estimator
Author :
Laxhammar, Rikard ; Falkman, Göran ; Sviestins, Egils
Author_Institution :
Inf. Res. Centre, Univ. of Skovde, Skovde, Sweden
Abstract :
This paper presents a first attempt to evaluate two previously proposed methods for statistical anomaly detection in sea traffic, namely the Gaussian mixture model (GMM) and the adaptive kernel density estimator (KDE). A novel performance measure related to anomaly detection, together with an intermediate performance measure related to normalcy modeling, are proposed and evaluated using recorded AIS data of vessel traffic and simulated anomalous trajectories. The normalcy modeling evaluation indicates that KDE more accurately captures finer details of normal data. Yet, results from anomaly detection show no significant difference between the two techniques and the performance of both is considered suboptimal. Part of the explanation is that the methods are based on a rather artificial division of data into geographical cells. The paper therefore discusses other clustering approaches based on more informed features of data and more background knowledge regarding the structure and natural classes of the data.
Keywords :
Gaussian processes; data analysis; marine engineering; pattern clustering; ships; traffic engineering computing; Gaussian mixture model; anomaly detection; background knowledge; clustering approaches; geographical cells; kernel density estimator; sea traffic; vessel traffic; Context awareness; Context modeling; Informatics; Kernel; Machine learning algorithms; Neural networks; Object detection; Sea measurements; Surveillance; Traffic control; Anomaly detection; Density estimation; Gaussian Mixture Model; adaptive Kernel Density Estimation; sea surveillance;
Conference_Titel :
Information Fusion, 2009. FUSION '09. 12th International Conference on
Conference_Location :
Seattle, WA
Print_ISBN :
978-0-9824-4380-4