DocumentCode :
50221
Title :
A Differential Lyapunov Framework for Contraction Analysis
Author :
Forni, F. ; Sepulchre, R.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Liege, Liège, Belgium
Volume :
59
Issue :
3
fYear :
2014
fDate :
Mar-14
Firstpage :
614
Lastpage :
628
Abstract :
Lyapunov´s second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves.
Keywords :
Lyapunov methods; differential equations; stability; state-space methods; Finsler structure; Lyapunov second theorem; analog theorem; differential Lyapunov framework; differential equations; incremental stability analysis; infinitesimal contraction; state-space; tangent bundle; Asymptotic stability; Differential equations; Lyapunov methods; Manifolds; Measurement; Stability analysis; Vectors; Contraction; Lyapunov methods; incremental stability; linearization; nonlinear systems;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2013.2285771
Filename :
6632882
Link To Document :
بازگشت