DocumentCode
504421
Title
Inverse problem of a modified LQ control
Author
Saito, Mitsuyuki ; Ono, Takahiko ; Hikita, Shinichi ; Yamanaka, Kazuo ; Kawasaki, Naoya
Author_Institution
Grad. Sch. of Inf. Sci., Hiroshima City Univ., Hiroshima, Japan
fYear
2009
fDate
18-21 Aug. 2009
Firstpage
5135
Lastpage
5138
Abstract
A frequency-domain characterization of the solution to a modified LQ problem, which have been formulated and solved by the present authors, is discussed. In the modified LQ problem the optimal state feedback law is supposed to be determined in terms of minimum covariance matrix of the state vector. Without costing the control power, the problem is made well-posed by assuming state observation noise that effectively suppresses the control power. An inequality condition similar to the well known circle criterion is derived as a necessary and sufficient condition for a state feedback law to be the solution to some LQ problem of the modified form.
Keywords
covariance matrices; linear quadratic control; state feedback; control power; frequency-domain characterization; inequality condition; inverse problem; linear quadratic control; minimum covariance matrix; modified LQ control; optimal state feedback law; state observation noise; state vector; Control engineering education; Cost function; Differential equations; Inverse problems; Optimal control; Regulators; Riccati equations; State feedback; Sufficient conditions; Vectors; Inverse LQ problem; LQ theory; Minimum variance control;
fLanguage
English
Publisher
ieee
Conference_Titel
ICCAS-SICE, 2009
Conference_Location
Fukuoka
Print_ISBN
978-4-907764-34-0
Electronic_ISBN
978-4-907764-33-3
Type
conf
Filename
5333319
Link To Document