DocumentCode
506855
Title
A New Parameter Estimation Algorithm for CARMA Models
Author
Zhao Yong-lei ; Zheng De-zhong
Author_Institution
Meas. Technol. & Instrum. Key Lab., Yanshan Univ., Qinhuangdao, China
Volume
1
fYear
2009
fDate
14-16 Aug. 2009
Firstpage
402
Lastpage
404
Abstract
A modified recursive maximum likelihood (RML) parameter estimation algorithm is presented in this paper. The white noise estimations obtained by fitting the CARMA model to the high-order controlled autoregressive(CAR) model using the recursive least squares (RLS) method. Using these white noise estimations into RML parameter estimation algorithm, which can solve the problem that parameters estimation becomes slow when the control parameters and noise parameter are tightly coupled. The modified RML parameter estimation algorithm has many advantages such as simple algorithm, small calculation amount, and high identification precision, good convergence. It can be used for on-line identification and real-time data processing, with theoretical significance and practical value.
Keywords
autoregressive moving average processes; least squares approximations; maximum likelihood estimation; white noise; controlled autoregressive integrated moving average model; high-order controlled autoregressive model; modified recursive maximum likelihood parameter estimation algorithm; recursive least squares method; white noise estimations; Data processing; Fuzzy systems; Instruments; Least squares approximation; Maximum likelihood estimation; Parameter estimation; Predictive models; Recursive estimation; Resonance light scattering; White noise; CARMA model; Recursive Maximum likelihood algorithm; least square method;
fLanguage
English
Publisher
ieee
Conference_Titel
Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth International Conference on
Conference_Location
Tianjin
Print_ISBN
978-0-7695-3735-1
Type
conf
DOI
10.1109/FSKD.2009.621
Filename
5358551
Link To Document