• DocumentCode
    506855
  • Title

    A New Parameter Estimation Algorithm for CARMA Models

  • Author

    Zhao Yong-lei ; Zheng De-zhong

  • Author_Institution
    Meas. Technol. & Instrum. Key Lab., Yanshan Univ., Qinhuangdao, China
  • Volume
    1
  • fYear
    2009
  • fDate
    14-16 Aug. 2009
  • Firstpage
    402
  • Lastpage
    404
  • Abstract
    A modified recursive maximum likelihood (RML) parameter estimation algorithm is presented in this paper. The white noise estimations obtained by fitting the CARMA model to the high-order controlled autoregressive(CAR) model using the recursive least squares (RLS) method. Using these white noise estimations into RML parameter estimation algorithm, which can solve the problem that parameters estimation becomes slow when the control parameters and noise parameter are tightly coupled. The modified RML parameter estimation algorithm has many advantages such as simple algorithm, small calculation amount, and high identification precision, good convergence. It can be used for on-line identification and real-time data processing, with theoretical significance and practical value.
  • Keywords
    autoregressive moving average processes; least squares approximations; maximum likelihood estimation; white noise; controlled autoregressive integrated moving average model; high-order controlled autoregressive model; modified recursive maximum likelihood parameter estimation algorithm; recursive least squares method; white noise estimations; Data processing; Fuzzy systems; Instruments; Least squares approximation; Maximum likelihood estimation; Parameter estimation; Predictive models; Recursive estimation; Resonance light scattering; White noise; CARMA model; Recursive Maximum likelihood algorithm; least square method;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth International Conference on
  • Conference_Location
    Tianjin
  • Print_ISBN
    978-0-7695-3735-1
  • Type

    conf

  • DOI
    10.1109/FSKD.2009.621
  • Filename
    5358551